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Abstract

The present work proposes a novel numerical solution algorithm based on a differential quadrature (DQ) method to simulate natural
convection in an inclined cubic cavity using velocity–vorticity form of the Navier–Stokes equations. Since the DQ method employs a
higher-order polynomial to approximate any given differential operator, the vorticity values at the boundaries can be computed more
accurately than the conventionally followed second-order accurate Taylor’s series expansion scheme. The numerical capability of the
present algorithm is demonstrated by the application to natural convection in an inclined cubic cavity. The velocity Poisson equations,
the continuity equation, the vorticity transport equations and the energy equation are all solved as a coupled system of equations for
the seven field variables consisting of three velocities, three vorticities and temperature. Thus coupling the velocity and the vorticity
transport equations allows the determination of the vorticity boundary values implicitly without requiring the explicit specification of
the vorticity boundary conditions. The present algorithm is proved to be an efficient method to resolve the non-linearity involved
with the vorticity transport equations and the energy equation. Test results obtained for an inclined cubic cavity with different angle
of inclinations for Rayleigh number equal to 103, 104, 105 and 106 indicate that the present coupled solution algorithm could pre-
dict the benchmark results for temperature and flow fields using a much coarse computational grid compared to other numerical
schemes.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Numerical solution of incompressible Navier–Stokes
equations is an important area in CFD related fields in
science and engineering. With the development of a wide
range of numerical schemes and algorithms, obtaining
numerical solution of the Navier–Stokes equations now
has become much easier compared to the previous decades.
However, there is a continuous research going on in the
development of new numerical algorithms as the CFD is
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used as a modeling tool in other areas of science as well.
The velocity–vorticity formulation, pioneered by Fasel
[1], is considered to be an alternate form of the Navier–
Stokes equations without involving the pressure term.
An important issue in the velocity–vorticity form of the
Navier–Stokes equations is the enforcement of the vorticity
definition on the boundary to assure divergence free veloc-
ity field. In many practical CFD problems, vortex dynam-
ics has dominated the study of turbulence flow field for
design purpose instead of the primitive variable form of
the Navier–Stokes equations. Daube [2] pointed out that
the satisfaction of the continuity equation reduces to
enforce the vorticity definition at the boundaries in terms
of curl of the velocity field. Moreover, the Navier–Stokes
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equations in velocity–vorticity form indicate that vorticity
is created at the boundary in such a way that it satisfies
the velocity boundary conditions [3]. By definition, the vor-
ticity is defined as the curl of the velocity field and hence
in order to exactly satisfy the vorticity definition at the
boundary, accurate computation of velocity gradients are
very crucial. Especially when fully discretized form of the
velocity–vorticity equations are solved using numerical
schemes based on grid or cell discretization, a suitable com-
putational procedure has to be followed to compute the
vorticity values at the boundary so that the vorticity defini-
tion is completely satisfied at the boundary nodes. Further,
in order to enforce the solenoidality of vorticity in a three-
dimensional flow field, the solution of the vorticity trans-
port equations depends on the accurate computation of
the vorticity values at the boundaries [3–5].

Generally the vorticity boundary values are determined
explicitly using a second-order accurate Taylor’s series
expansion scheme [6] while computing flow fields using
the velocity–vorticity form of the Navier–Stokes equations.
Hence care must be taken to assure accurate computation
of the vorticity values at the boundaries by using finer mesh
near the boundaries when lower-order schemes are used for
vorticity definition. The use of the differential quadrature
method enables the computation of vorticity definition
with higher-order polynomials. Because any given deriva-
tive with respect to a coordinate direction is approximated
using a polynomial order closer to the number of grid
points considered in that particular coordinate direction.
Furthermore, when a coupled numerical scheme involving
a global method of differential quadrature (DQ) method is
used to solve the governing equations, the explicit specifica-
tion of vorticity definition at the boundary is completely
eliminated, resulting in a simplified computational
procedure.

It should be noted that the curl of the momentum equa-
tions in primitive variable form gives rise to the dynamic
vorticity transport equations. Also, the curl of vorticity
definition, results in the kinematic velocity Poisson equa-
tions for the velocity field. Guj and Stella [3] pointed out
the solenoidal velocity field can be assured only by
coupling the kinematic and the dynamic equations. In the
present work, the velocities u and v in the x-direction and
y-direction are obtained by solving the Poisson equations;
the velocity w in the z-direction is determined from the con-
tinuity equation, thus assuring a divergence-free velocity
field [7]. On the other hand, the vorticity and the temper-
ature fields can be obtained by solving the vorticity
transport equations and the energy equation, respectively.
When higher-order approximation is used to compute all
the flow field variables, a numerical coupling between the
velocity, vorticity and temperature are required to satisfy
the conservative form of the velocity and the vorticity
fields. The motivation for the present work originated from
the fact that how to enforce the vorticity definition accu-
rately as the curl of velocity. By coupling the entire field
variables the vorticity boundary values can be computed
implicitly from the vorticity definition without needing
explicit specification of the known vorticity values.

The DQ method was first pioneered by Bellman et al. [8]
to approximate the derivative of a smooth function and has
been successfully implemented for solving many engineer-
ing problems [4,9–12]. Shu and Xue [10] applied the gener-
alized differential quadrature method to simulate natural
convection in a square cavity. Two boundary conditions
(Dirichlet and Neumann type) for the stream function at
each boundary were addressed in detail therein. The pres-
ent study proposes a novel idea to solve three-dimensional
Navier–Stokes equations by efficiently exploiting the
advantages of both the velocity–vorticity form of the
Navier–Stokes equations and the DQ method. Natural
convection in a differentially heated inclined cubic cavity
is represented by continuity equation, momentum equa-
tions and energy equation, which are coupled due to the
buoyancy term appearing in the momentum equation.
Hence natural convection in an inclined cubic cavity is con-
sidered to be the best example problem to test the numer-
ical capability of the proposed coupled algorithm. All the
seven field variables involving three velocities, three vorti-
cities and temperature are solved using a single global
matrix as a coupled system of variables.

The proposed numerical scheme is applied to determine
the velocity, vorticity and temperature variations for natu-
ral convection problem in a differentially heated inclined
cubic cavity for Rayleigh number range from 103 to 106.
Numerical formulation, solution procedure and compari-
sons of the present results with those obtained by other
numerical schemes are presented in the following sections.
2. Differential quadrature method

The DQ method replaces a given spatial derivative of a
function f(x) by a linear weighted sum of the function val-
ues at the discrete sample points considered along a coor-
dinate direction, resulting in a set of algebraic equations.
Hence the DQ method can be used to obtain numerical
solution of partial differential equations with higher-order
accuracy. The details about this method can be obtained
in Refs. [9,12]. For a function of three variables f(x,y,z),
the pth-order derivatives, qth-order derivatives and rth-
order derivatives of the function with respect to x, y and
z coordinates can be obtained as

f ðpÞx ðxi;yj; zkÞ ¼
XL

l¼1

AðpÞi;l f ðxl;yj; zkÞ; p¼ 1;2; . . . ;L� 1 ð1aÞ

f ðqÞy ðxi;yj; zkÞ ¼
XM

m¼1

BðqÞj;mf ðxi;ym; zkÞ; q¼ 1;2; . . . ;M � 1 ð1bÞ

f ðrÞz ðxi;yj; zkÞ ¼
XN

n¼1

CðrÞk;nf ðxi;yj; znÞ; r¼ 1;2; . . . ;N � 1 ð1cÞ
for i = 1,2, . . . ,L; j = 1,2, . . . ,M; k = 1,2, . . . ,N
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where l, m, n are the indices for the grid points in the x-, y-
and z-coordinates respectively, L, M, N are the number of
grid points in the x-, y-, z-directions, respectively and
AðpÞi;l ;B

ðqÞ
j;m;C

ðrÞ
k;n are the weighting coefficients. The first-order

weighting coefficients Að1Þi;l ;B
ð1Þ
j;m;C

ð1Þ
k;n can be determined as

follows:

Að1Þi;j ¼
Lð1ÞðxiÞ

ðxi� xjÞLð1ÞðxjÞ
; i; j¼ 1;2; . . . ;L; but j 6¼ i ð2aÞ

Bð1Þi;j ¼
M ð1ÞðyiÞ

ðyi � yjÞM ð1ÞðyjÞ
; i; j¼ 1;2; . . . ;M ; but j 6¼ i ð2bÞ

Cð1Þi;j ¼
N ð1ÞðziÞ

ðzi� zjÞN ð1ÞðzjÞ
; i; j¼ 1;2; . . . ;N ; but j 6¼ i ð2cÞ

in which

Lð1ÞðxiÞ ¼
YL

j¼1;j 6¼i

ðxi � xjÞ;

M ð1ÞðyiÞ ¼
YM

j¼1;j 6¼i

ðyi � yjÞ; N ð1ÞðziÞ ¼
YN

j¼1;j 6¼i

ðzi � zjÞ ð3Þ

Similarly the weighting coefficients for the second- and
higher-order derivatives can be obtained as

AðpÞi;j ¼ p Aðp�1Þ
i;i Að1Þi;j �

Aðp�1Þ
i;j

xi � xj

 !
; for i; j ¼ 1; 2; . . . ;L;

but j 6¼ i; l ¼ 2; 3; . . . ; L� 1 ð4aÞ

BðqÞi;j ¼ q Bðq�1Þ
i;i Bð1Þi;j �

Bðq�1Þ
i;j

yi � yj

 !
; for i; j ¼ 1; 2; . . . ;M ;

but j 6¼ i; m ¼ 2; 3; . . . ;M � 1 ð4bÞ

CðrÞi;j ¼ r Cðr�1Þ
i;i Cð1Þi;j �

Cðr�1Þ
i;j

zi � zj

 !
; for i; j ¼ 1; 2; . . . ;N ;

but j 6¼ i; n ¼ 2; 3; . . . ;N � 1 ð4cÞ

When j = i, the weighting coefficients are written as

AðpÞi;i ¼�
XL

j¼1;j 6¼i

AðpÞi;j ; i¼ 1;2; . . . ;L; p¼ 1;2; . . . ;L� 1 ð5aÞ

BðqÞi;i ¼�
XM

j¼1;j 6¼i

BðqÞi;j ; i¼ 1;2; . . . ;M ; q¼ 1;2; . . . ;M � 1 ð5bÞ

CðrÞi;i ¼�
XN

j¼1;j 6¼i

CðrÞi;j ; i¼ 1;2; . . . ;N ; r¼ 1;2; . . . ;N � 1 ð5cÞ

It should be noted from the above equations that the
weighting coefficients of the second- and higher-order
derivatives can be computed from the first-order deriva-
tives themselves.

3. Governing equations

The governing equations for natural convection can be
described by the incompressible Navier–Stokes equations
and the energy equation. Assuming the Boussinesq approx-
imation, the velocity–vorticity form of the Navier–Stokes
equations can be written in a non-dimensional form as
follows:

Velocity Poisson equations

r2u ¼ � of
oy
þ og

oz
ð6aÞ

r2v ¼ � on
oz
þ of

ox
ð6bÞ

r2w ¼ � og
ox
þ on

oy
ð6cÞ

Vorticity transport equations

on
ot
þu

on
ox
þ v

on
oy
þw

on
oz

¼ n
ou
ox
þg

ou
oy
þ f

ou
oz
þPrðr2nÞþRaPrcos/

oT
oy

� �
ð7aÞ

og
ot
þu

og
ox
þ v

og
oy
þw

og
oz

¼ n
ov
ox
þg

ov
oy
þ f

ov
oz
þPrðr2gÞþRaPr sin/

oT
oz
� cos/

oT
ox

� �
ð7bÞ

of
ot
þu

of
ox
þ v

of
oy
þw

of
oz

¼ n
ow
ox
þg

ow
oy
þ f

ow
oz
þPrðr2fÞ�RaPr sin/

oT
oy

� �
ð7cÞ

Energy equation

oT
ot
þ u

oT
ox
þ v

oT
oy
þ w

oT
oz
¼ r2T ð8Þ

The main focus of the present numerical solution pro-
cedure is to compute divergence-free velocity field for
coupled problems using coarse mesh compared to other
numerical schemes. After computing the u and the v veloc-
ity components, the w velocity component can be obtained
either using Eq. (6c) or the divergence of the continuity
equation with respect to the z-direction as given below:

o2u
oxoz

þ o2v
oy oz

þ o2w
oz2
¼ 0 ð9Þ

It should be noted that the velocity Poisson equations (6a)–
(6c) have been obtained only after satisfying the continuity
constraint. Hence computing the w velocity using Eq. (9)
becomes an indirect verification for the correct determina-
tion of the u and the v velocity components and also it re-
duces the computational time as discussed by Wu et al. [7].

The computational domain is discretized using a Carte-
sian coordinate frame with x–y representing the horizontal
plane and z directing in the vertical direction. In the velo-
city–vorticity form of the Navier–Stokes equations, the
vorticity vector is defined as

~x ¼ r�~u ð10Þ

where~u ¼ ðu; v;wÞ and ~x ¼ ðn; g; 1Þ are the velocity and the
vorticity vectors in the x-, y- and z-directions, respectively.
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The non-dimensional parameters are defined as, Prandtl
number, Pr ¼ t

a and Rayleigh number, Ra ¼ gbDTL3

at .
Eqs. (6a), (6b), (7a)–(7c), (8), (9) are the final form of the

governing equations that characterize the flow and heat
transfer during a natural convection process. These equa-
tions have to be solved in a computational domain X which
is enclosed by a solid boundary C. For the problem of nat-
ural convection in a differentially heated cubic cavity, no-
slip velocity boundary conditions are assumed on all the
boundary walls. The Dirichlet boundary conditions for
velocity on all the walls can be imposed as

~u ¼~ub ¼ 0 ð11Þ
The boundary conditions for the vorticity transport equa-
tions are computed from its definition given by Eq. (10).
The energy equation is solved by assuming Dirichlet tem-
perature boundary conditions equal to �0.5 and 0.5,
respectively on the left and the right walls of the cavity
and the other walls of the cavity are assumed to be adia-
batic for heat transport. The Dirichlet and the Neumann
boundary conditions for the energy equation can be written
respectively as

T ¼ T b ð12aÞ
oT
oy
¼ 0;

oT
oz
¼ 0 ð12bÞ
4. Numerical solution

In order to achieve a significant saving in the computa-
tional effort, a coupled solution scheme via a single global
matrix is adopted to compute all the field variables. Using
this coupled algorithm, the boundary vorticity values
are computed implicitly, without the need to compute
the boundary vorticity values externally using a separate
scheme such as the Taylor’s series expansion scheme
adopted by Wong and Baker [6]. The coupled algorithm
has also enabled the implicit enforcement of the kinematic
Poisson equations as well as the coupling of the velocity
and the vorticity at the wall. In addition to this, the use
of the DQ method enables the approximation of the vortic-
ity definition at the boundaries with higher-order accuracy
using only a coarse mesh. Hence the continuity con-
straint and the conservation of the solenoidality of vorti-
city field are easily satisfied in the proposed coupled
algorithm. The time derivatives of the vorticity transport
equations and the energy equation are discretized using
a semi-implicit Adams-Bashforth/backward-differentiation
scheme expressed as

oG
ot
þ u � rGþr2G¼ f

) 3Gtþ1� 4Gt þGt�1

2Dt
þ 2ut � rGt � ut�1 � rGt�1þr2Gtþ1

¼ f tþ1 ð13Þ
4.1. Approximation of the governing equations using

the DQ method

Application of the DQ method to spatial discretization
of the governing equations results in a set of algebraic
equations. The velocity Poisson equations (6a) and (6b)
and the continuity equation (9) are approximated using
the DQ method to obtain the velocity components in the
three coordinate directions, respectively, as

XL

l¼1

Að2Þi;l ul;j;k þ
XM

m¼1

Bð2Þj;mui;m;k þ
XN

n¼1

Cð2Þk;nui;j;n

þ
XM

m¼1

Bð1Þj;mfi;m;k �
XN

n¼1

Cð1Þk;ngi;j;n ¼ 0 ð14aÞ

XL

l¼1

Að2Þi;l vl;j;k þ
XM

m¼1

Bð2Þj;mvi;m;k þ
XN

n¼1

Cð2Þk;nvi;j;n

�
XL

l¼1

Að1Þi;l fl;j;k þ
XN

n¼1

Cð1Þk;nni;j;n ¼ 0 ð14bÞ

XL

l¼1

Að1Þi;l

XN

n¼1

Cð1Þk;nul;j;n þ
XM

m¼1

Bð1Þj;m

XN

n¼1

Cð1Þk;nvi;m;n

þ
XN

n¼1

Cð2Þk;nwi;j;n ¼ 0 ð14cÞ
The vorticity transport equations (7a)–(7c) are approxi-
mated for the solution of the vorticity components in the
three coordinate directions as follows:

ð3ni;j;kÞtþ1

2Dt
� Pr

XL

l¼1

Að2Þi;l nl;j;kþ
XM

m¼1

Bð2Þj;mni;m;kþ
XN

n¼1

Cð2Þk;nni;j;n

 !tþ1

�RaPr cos/
XM

m¼1

Bð1Þj;mT i;m;k

 !tþ1

¼ ð4ni;j;kÞt

2Dt
�ðni;j;kÞt�1

2Dt

�2 ui;j;k

XL

l¼1

Að1Þi;l nl;j;k þ vi;j;k

XM

m¼1

Bð1Þj;mni;m;k þwi;j;k

XN

n¼1

Cð1Þk;nni;j;n

 !t

þ ui;j;k

XL

l¼1

Að1Þi;l nl;j;kþ vi;j;k

XM

m¼1

Bð1Þj;mni;m;kþwi;j;k

XN

n¼1

Cð1Þk;nni;j;n

 !t�1

þ2 ni;j;k

XL

l¼1

Að1Þi;l ul;j;k þgi;j;k

XM

m¼1

Bð1Þj;mui;m;kþ fi;j;k

XN

n¼1

Cð1Þk;nui;j;n

 !t

� ni;j;k

XL

l¼1

Að1Þi;l ul;j;kþ gi;j;k

XM

m¼1

Bð1Þj;mui;m;kþ fi;j;k

XN

n¼1

Cð1Þk;nui;j;n

 !t�1

ð15aÞ
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ð3gi;j;kÞ
tþ1

2Dt
�Pr

XL

l¼1

Að2Þi;l gl;j;kþ
XM

m¼1

Bð2Þj;mgi;m;kþ
XN

n¼1

Cð2Þk;ngi;j;n

 !tþ1

�RaPr sin/
XN

n¼1

Cð1Þk;nT i;j;n� cos/
XL

l¼1

Að1Þi;l T l;j;k

 !tþ1

¼
ð4gi;j;kÞ

t

2Dt
�
ðgi;j;kÞ

t�1

2Dt

� 2 ui;j;k

XL

l¼1

Að1Þi;l gl;j;kþ vi;j;k

XM

m¼1

Bð1Þj;mgi;m;kþwi;j;k

XN

n¼1

Cð1Þk;ngi;j;n

 !t

þ ui;j;k

XL

l¼1

Að1Þi;l gl;j;kþ vi;j;k

XM

m¼1

Bð1Þj;mgi;m;kþwi;j;k

XN

n¼1

Cð1Þk;ngi;j;n

 !t�1

þ 2 ni;j;k

XL

l¼1

Að1Þi;l vl;j;k þ gi;j;k

XM

m¼1

Bð1Þj;mvi;m;k þ fi;j;k

XN

n¼1

Cð1Þk;nvi;j;n

 !t

� ni;j;k

XL

l¼1

Að1Þi;l vl;j;kþ gi;j;k

XM

m¼1

Bð1Þj;mvi;m;kþ fi;j;k

XN

n¼1

Cð1Þk;nvi;j;n

 !t�1

ð15bÞ
ð3fi;j;kÞtþ1

2Dt
� Pr

XL

l¼1

Að2Þi;l fl;j;k þ
XM

m¼1

Bð2Þj;mfi;m;k þ
XN

n¼1

Cð2Þk;nfi;j;n

 !tþ1

þRaPr cos/
XM

m¼1

Bð1Þj;mT i;m;k

 !tþ1

¼ ð4fi;j;kÞt

2Dt
�ðfi;j;kÞt�1

2Dt

� 2 ui;j;k

XL

l¼1

Að1Þi;l fl;j;k þ vi;j;k

XM

m¼1

Bð1Þj;mfi;m;k þwi;j;k

XN

n¼1

Cð1Þk;nfi;j;n

 !t

þ ui;j;k

XL

l¼1

Að1Þi;l fl;j;k þ vi;j;k

XM

m¼1

Bð1Þj;mfi;m;k þwi;j;k

XN

n¼1

Cð1Þk;nfi;j;n

 !t�1

þ 2 ni;j;k

XL

l¼1

Að1Þi;l wl;j;k þ gi;j;k

XM

m¼1

Bð1Þj;mwi;m;k þ fi;j;k

XN

n¼1

Cð1Þk;nwi;j;n

 !t

� ni;j;k

XL

l¼1

Að1Þi;l wl;j;k þ gi;j;k

XM

m¼1

Bð1Þj;mwi;m;k þ fi;j;k

XN

n¼1

Cð1Þk;nwi;j;n

 !t�1

ð15cÞ
Finally the DQ form of the energy equation is written as
Fig. 1. Layout of the problem.
ð3T i;j;kÞtþ1

2Dt
�

XL

l¼1

Að2Þi;l T l;j;k þ
XM

m¼1

Bð2Þj;mT i;m;k þ
XN

n¼1

Cð2Þk;nT i;j;n

 !tþ1

¼ ð4T i;j;kÞt

2Dt
�ðT i;j;kÞt�1

2Dt

� 2 ui;j;k

XL

l¼1

Að1Þi;l T l;j;k þ vi;j;k

XM

m¼1

Bð1Þj;mT i;m;k þwi;j;k

XN

n¼1

Cð1Þk;nT i;j;n

 !t

þ ui;j;k

XL

l¼1

Að1Þi;l T l;j;k þ vi;j;k

XM

m¼1

Bð1Þj;mT i;m;k þwi;j;k

XN

n¼1

Cð1Þk;nT i;j;n

 !t�1

ð16Þ
4.2. Determination of vorticity boundary conditions

The vorticity boundary conditions for all the three vor-
ticity transport equations in the principal coordinate direc-
tions are computed using the vorticity definition given
by Eq. (10). The velocity gradients used in this definition
are computed using a polynomial expression with the
highest-order polynomial equal to (N � 1) where N is the
number of grid points in the given coordinate direction,
as expressed by the first-order weighting coefficients

Að1Þi;l ;B
ð1Þ
j;m;C

ð1Þ
k;n. By applying the DQ approximation to the

vorticity definition given by Eq. (10) the three vorticity
components on a boundary can be expressed as

ni;j;k �
XM

m¼1

Bð1Þj;mwi;m;k þ
XN

n¼1

Cð1Þk;nvi;j;n ¼ 0 ð17aÞ

gi;j;k þ
XL

l¼1

Að1Þi;l wl;j;k �
XN

n¼1

Cð1Þk;nui;j;n ¼ 0 ð17bÞ

fi;j;k �
XL

l¼1

Að1Þi;l vl;j;k þ
XM

m¼1

Bð1Þj;mui;m;k ¼ 0 ð17cÞ

The Dirichlet boundary conditions for the temperature are
expressed as

T L;j;k ¼ 0:5; j ¼ 1; . . . ;M ; k ¼ 1; . . . ;N
T 1;j;k ¼ �0:5; j ¼ 1; . . . ;M ; k ¼ 1; . . . ;N

ð18Þ

The adiabatic boundary conditions are enforced by
computing the normal derivatives of the temperature at
the adiabatic walls and equating them to zero. Hence the
DQ form of the adiabatic boundary conditions can be
represented in the following expressions:

XM

m¼1

Bð1Þj;mT i;m;k ¼ 0; i¼ 2; . . . ;L�1; k¼ 1; . . . ;N ; j¼ 1;M

ð19aÞXN

n¼1

Cð1Þk;nT i;j;n¼ 0; i¼ 2; . . . ;L�1; j¼ 1; . . . ;M ; k¼ 1;L

ð19bÞ
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Eqs. (19a) and (19b) also involve the implicit scheme for
the Neumann boundary conditions.
4.3. Solution procedure

The simultaneous equations resulting from the single
global matrix system of equation are solved using a BICG
iterative solver [13]. Since the coefficient matrix of the glo-
bal matrix system is sparse, only the non-zero entries are
stored in a column storage format. In the successive time
step, we used the velocity, vorticity and temperature com-
ponents at the previous time step as the initial guesses for
Table 1
Grid-independence study results for Ra = 103, 104, 105, 106

Ra Nusselt number PSC (813) [14] DQ method

213 grids

Ra = 103 Numean 1.0873 1.0870
Error (%) 0.0276
Nuover 1.0700 1.0700
Error (%) 0.0000

Ra = 104 Numean 2.2505 2.2534
Error (%) 0.1289
Nuover 2.0542 2.0522
Error (%) 0.0974

Ra = 105 Numean 4.6127 4.6241
Error (%) 0.2471
Nuover 4.3371 4.3292
Error (%) 0.1821

Ra = 106 Numean 8.8771 8.9099
Error (%) 0.3690
Nuover 8.6407 8.6694
Error (%) 0.3321

Table 2
Numerical results for Ra = 103 at different angles

Ra 0� 15� 3

Numean 1.0884 1.0731 1

Nuover 1.0710 1.0590 1

103

umax x 0.0000 0.0000
y 3.5227 0.5000 3.1766 0.5000 2
z 0.1956 0.1956

vmax x 0.0000 0.0000
y 0.1726 0.2500 0.1385 0.2500 0
z 0.5000 0.5000

wmax x 0.3044 0.3044
y 3.5163 0.5000 3.1850 0.5000 2
z 0.5000 0.5000

ummax x 3.5227 0.0000 3.1766 0.0000 2
z 0.1956 0.1956

wmmax x 3.5163 0.3044 3.1850 0.3044 2
z 0.5000 0.5000
the next iteration. The computations are carried out until
steady state conditions are reached.

The convergence criteria used in the time loop to achieve
steady state conditions are

jðutþ1 � utÞ=utj 6 10�6; jðvtþ1 � vtÞ=vtj 6 10�6;

jðwtþ1 � wtÞ=wtj 6 10�6; jðntþ1 � ntÞ=ntj 6 10�6;

jðgtþ1 � gtÞ=gtj 6 10�6; jðftþ1 � ftÞ=ftj 6 10�6;

jðT tþ1 � T tÞ=T tj 6 10�6 ð20Þ

For the DQ method, the mesh point distribution in the
three spatial coordinates is assumed to be the same and is
expressed as
233 grids 253 grids 413 grids

1.0870 1.0870 1.0870
0.0276 0.0276 0.0276
1.0700 1.0700 1.0700
0.0000 0.0000 0.0000

2.2510 2.2510 2.2510
0.0222 0.0222 0.0222
2.0545 2.0540 2.0540
0.0146 0.0097 0.0097

4.6176 4.6100 4.6100
0.1062 0.0585 0.0585
4.3341 4.3350 4.3350
0.0692 0.0484 0.0484

8.9098 8.9098 8.9098
0.3684 0.3678 0.3678
8.6691 8.6678 8.6678
0.3287 0.3136 0.3136

0� 45� 60�

.0533 1.0329 1.0156

.0432 1.0268 1.0127

0.0000 0.0000 0.0000
.6870 0.5000 2.0940 0.5000 1.4310 0.5000

0.1956 0.1956 0.1956

0.0000 0.0000 0.2500
.0982 0.2500 0.0593 0.2500 0.0330 0.8044

0.5000 0.5000 0.1033

0.3044 0.3044 0.3044
.7063 0.5000 2.1176 0.5000 1.4519 0.5000

0.5000 0.5000 0.5000

.6870 0.0000 2.6870 0.0000 1.4310 0.000
0.1956 0.1956 0.196

.7063 0.3044 2.7063 0.3044 1.4519 0.304
0.5000 0.5000 0.500
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xi ¼
cos½p=ð2LÞ�� cos½ð2i� 1Þp=ð2LÞ�
cos½p=ð2LÞ�� cos½ð2L� 1Þp=ð2LÞ� ; i¼ 1;2; . . . ;L

yj ¼
cos½p=ð2MÞ�� cos½ð2j� 1Þp=ð2MÞ�

cos½p=ð2MÞ�� cos½ð2M � 1Þp=ð2MÞ� ; j¼ 1;2; . . . ;M

zk ¼
cos½p=ð2NÞ�� cos½ð2k� 1Þp=ð2NÞ�
cos½p=ð2NÞ�� cos½ð2N � 1Þp=ð2NÞ� ; k ¼ 1;2; . . . ;N

ð21Þ

where L, M, N are the number of grid points in the x-, y-
and z-directions, respectively.

5. Numerical results

The schematic diagram of the inclined cubic cavity with
the boundary conditions for the natural convection prob-
Table 3
Numerical results for Ra = 104 at different angles

Ra 0� 15� 3

Numean 2.2509 1.9858 1

Nuover 2.0537 1.8425 1

104

umax x 0.0000 0.0653
y 16.5312 0.5000 13.4033 0.5000 1
z 0.1956 0.1956

vmax x 0.3967 0.3536
y 2.1092 0.8044 1.4016 0.7500
z 0.1464 0.1464

wmax x 0.3967 0.3967
y 18.6971 0.3087 15.6796 0.3087 1
z 0.5000 0.4347

ummax x 1.4310 0.0000 13.4033 0.0653 1
z 0.1956 0.1956

wmmax x 1.4519 0.3044 15.5214 0.3967 1
z 0.5000 0.4347

Table 4
Numerical results for Ra = 105 at different angles

Ra 0� 15� 3

Numean 4.6110 3.9690 3

Nuover 4.3329 3.7731 2

105

umax x �0.1913 �0.1913
y 43.6877 0.2500 27.3932 0.3087 2
z 0.1033 0.1464

vmax x 0.4330 0.3967
y 9.3720 0.8536 6.3100 0.8536
z 0.1033 0.1033

wmax x 0.4330 0.4330
y 70.6267 0.1464 57.5766 0.1464 4
z 0.5000 0.4347

ummax x 42.7846 �0.1913 26.8051 �0.1913 2
z 0.1033 0.1464

wmmax x 65.3083 0.4330 54.3757 0.4330 3
z 0.5000 0.4347
lem is displayed in Fig. 1. Temperatures equal to �0.5
and 0.5 are enforced on the left wall at x = �0.5 and
the right wall at x = 0.5, respectively. Numerical
results obtained for the test problem are discussed in this
section.
5.1. Grid independence study

One of the aims of the present numerical scheme is to
show that the use of higher-order polynomials for approx-
imating the partial differential equations requires relatively
a coarse mesh to achieve benchmark solutions. This has
great advantage while dealing with three-dimensional flow
problems. In order to validate the computer program
developed to solve the governing equations for the natural
0� 45� 60�

.6800 1.3913 1.1720

.5894 1.3434 1.1524

0.0653 0.1294 0.0653
0.2433 0.5000 7.3206 0.3706 4.6810 0.3087

0.1464 0.1464 0.1464

0.2500 0.0000 �0.1294
0.7776 0.7500 0.4910 0.7500 0.3133 0.7500

0.1033 0.1033 0.1033

0.3967 0.3967 0.3536
2.0352 0.3087 8.3556 0.4347 5.1963 0.5000

0.4347 0.4347 0.4347

0.2433 0.0653 7.3057 0.0653 4.6223 0.0653
0.1464 0.1464 0.1464

1.9774 0.3967 8.3523 0.3967 5.1963 0.3536
0.4347 0.4347 0.4347

0� 45� 60�

.0241 2.0385 1.3840

.9014 1.9791 1.3623

0.3044 0.3536 0.3044
2.2297 0.1956 16.1999 0.1464 9.8207 0.1464

0.1033 0.0670 0.0670

0.3536 0.3967 0.3967
3.6066 0.8536 1.7519 0.1956 0.8845 0.1956

0.0670 0.4347 0.3087

0.4330 0.4330 0.4330
1.1468 0.1464 24.9537 0.1956 13.2210 0.2500

0.3706 0.3087 0.3087

1.7375 0.3044 15.7396 0.3536 9.3477 0.3044
0.1033 0.0670 0.0670

9.6992 0.4330 24.4660 0.4330 13.0699 0.4330
0.3706 0.3087 0.3087



Table 5
Numerical results for Ra = 106 at different angles

Ra 0� 15� 30� 45� 60�

Numean 8.9098 7.5445 5.3303 2.8754 1.5829

Nuover 8.6678 7.3630 5.2133 2.8202 1.5585

106

umax x �0.3044 0.3967 0.4330 0.4330 0.3967
y 127.3724 0.1956 57.8944 0.1464 50.1269 0.1033 35.9581 0.0670 21.4072 0.0670
z 0.0670 0.0670 0.0381 0.0381 0.0381

vmax x 0.4619 0.4619 0.4330 0.3967 0.3536
y 24.7203 0.8967 15.9619 0.9330 10.5337 0.9330 4.9564 0.9330 2.7513 0.8967
z 0.1033 0.0670 0.0381 0.0381 0.0670

wmax x 0.4619 0.4619 0.4619 0.4619 0.4619
y 235.4754 0.0670 189.5337 0.0670 131.4209 0.1033 71.0999 0.1033 37.8190 0.1464
z 0.4347 0.3706 0.3087 0.2500 0.2500

ummax x 123.3556 �0.3044 55.4034 0.3967 48.6352 0.4330 35.1276 0.4330 20.7674 0.3967
z 0.0670 0.0670 0.0381 0.0381 0.0381

wmmax x 217.6959 0.4619 179.0765 0.4619 126.3809 0.4619 68.7421 0.4619 36.7391 0.4619
z 0.5000 0.3706 0.3087 0.2500 0.2500

Fig. 2. Temperature profiles in the centerline of the symmetry plane at y = 0.5 for (a) / = 0�, (b) / = 15�, (c) / = 30�, (d) / = 45�.
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convection problem, initially a grid independence study
was carried out for Ra = 103, 104, 105, 106. The Nusselt
number Nu is one of the important dimensionless parame-
ters in heat transfer analysis of natural convection prob-
lems. The mean and the overall Nusselt number values
are computed as

1. The mean Nusselt number throughout the cavity

NumeanðyÞ ¼
Z 1

0

oT ðy; zÞ
ox

����
x¼�0:5; or x¼0:5

dz: ð22Þ

2. The overall Nusselt number on the boundary at
x = �0.5 or x = 0.5
Nuoverall ¼
Z 1

0

NumeanðyÞdy: ð23Þ

Further, in order to make sure that the grid indepen-
dence study is in accordance with other numerical results,
the grid independence study results obtained for the case
Fig. 3. Velocity vectors at y = 0.5 plane for Ra = 106 in a diffe
of / = 0 were compared with the results of Tric et al. [14]
who used pseudo-spectral Chebyshev algorithm based on
the projection-diffusion method with a spatial resolution
supplied by polynomial expansions. For the mesh sensitiv-
ity study, the mean and the overall Nusselt number values
were computed for 103

6 Ra 6 106 using four different
meshes of size 213, 233, 253 and 413. The value of Prandtl
number was assumed as 0.71 for all these computations.
Table 1 depicts the comparisons between the values of
the mean and the overall Nusselt numbers obtained using
the present method for the four mesh sizes and the results
obtained by Tric et al. [14]. It can be observed that the
results obtained by using the present numerical algorithm
with the above four grids of size are almost in excellent
agreement with the results of Tric et al. [14] for all the val-
ues of the Rayleigh numbers considered in this study. Even
for the minimum grid size 213, no difference is observed
between the values of the mean and the overall Nusselt
numbers obtained by the four grid system. This clearly
demonstrates that the DQ method used for the solution
rent angle (a) / = 0�, (b) / = 15�, (c) / = 30�, (d) / = 45�.
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of the velocity–vorticity form of the Navier–Stokes equa-
tions can predict the Nusselt number values accurately
even with a coarse mesh and the scheme is independent
of spatial discretization with a minimum grid size of 213.

5.2. Effect of angle of inclination on natural convection
phenomenon

Numerical results of the Nusselt numbers for different
angle of inclination of the cavity are shown in Tables 2–
5, for Ra = 103, 104, 105, 106, respectively. We also present
results for the maximum values of velocities along with the
maximum value of velocity for the symmetric mid-planes
on the principal planes in the above tables. With increase
in the angle of inclination, the buoyancy force decreases
resulting in poor free convection phenomenon inside the
cavity. This is clearly indicated by the decreasing trend of
the Nusselt number values with increase in the angle of
inclination as observed in the above tables for all the values
of the Rayleigh numbers.
Fig. 4. Vorticity contours at y = 0.5 plane for Ra = 106 in a diff
For the natural convection problem in a cavity with
no-slip velocity boundary conditions on all the boundary
walls, the only driving force is the buoyancy force, which
is generated by the difference in density of the fluid and
the vertical gravitational field in the z-direction. The varia-
tion in the density is due to the change in temperature at
the left and the right walls, which were subjected to �0.5
and 0.5, respectively in the present case. The capability of
the present numerical scheme can be tested by plotting
the temperature variations along the x-coordinate as
shown in Fig. 2 for different values of the Rayleigh number
and angle of inclination, /. As the angle of inclination
increases, the buoyancy force is not sufficient enough to
generate the convective current of the fluid. Hence the
expected increased fluid convection due to increase in the
Rayleigh number value is not observed in the above figures.
The temperature gradient, which is linear for heat diffusion
is clearly predicted by the present numerical algorithm as
depicted in Fig. 2(d) at / = 45�. With increase in the
Rayleigh number, initially the convective currents are
erent angle (a) / = 0�, (b) / = 15�, (c) / = 30�, (d) / = 45�.
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slowly set up in the flow field near the cold and the hot
walls for all the four values of the Rayleigh number. The
temperature gradient of the cavity almost reaches linear
distributions at 103

6 Ra 6 106 due to the increase in the
angle of inclination.

Natural convection in a differentially heated cubic enclo-
sure at different angle of inclination involves a vortex-dom-
inated flow and this problem serves as a test case for any
new CFD code. An important aspect of this problem is that
the fluid movement takes place purely due to the buoyancy
forces generated due to the temperature difference between
the end walls. The present formulation based on the veloc-
ity–vorticity equations and the DQ method requires only
the velocity and the temperature boundary conditions to
be specified on the cavity walls because the vorticity values
at the boundary are computed implicitly in the proposed
coupled formulation. Apart from testing the code for the
present formulation with respect to the Nusselt numbers,
it is also required to verify for the flow fields, such as the
velocity vectors, vorticity contour and temperature distri-
butions as predicted by the present method. The character-
istics of the natural convection phenomenon can be well
Fig. 5. Contour maps of temperature at y = 0.5 plane for Ra = 106 in
understood by plotting the velocity vectors on the various
symmetric mid-planes along the principal axes. Fig. 3(a)–
(d) represents the velocity vectors plotted on x–z plane at
y = 0.5 symmetric plane of the cavity for / = 0�, 15�,
30�, 45�, respectively at Ra = 106. As the angle of inclina-
tion increases the effect of decreased buoyancy forces is felt
on the flow pattern. With increase in the angle of inclina-
tion, the velocity gradient decreases near the vertical walls
as observed in the above figures.

The circulatory gyre pattern for natural convection in a
cubic cavity can be more vividly captured using the vortic-
ity contours on the mid-planes along the principal axes.
Fig. 4(a)–(d) shows the vorticity contours plotted on the
x–z plane at y = 0.5 for the angle of inclination varying
from 0� to 45� at Ra = 106. As observed in the vorticity
distribution, the vorticity generated at the boundaries are
clearly shown in the above figures. With increase in the
angle of inclination, the intensity of vorticity generation
is observed to shift from the left and the right walls to
top left corner and the bottom right corner. These changes
indirectly indicate the variations in the velocity gradients
due to the varying angle of inclination.
a different angle (a) / = 0�, (b) / = 15�, (c) / = 30�, (d) / = 45�.



Fig. 6. Distribution of the mean Nusselt number along the y-direction for (a) Ra = 103, (b) Ra = 104, (c) Ra = 105, (d) Ra = 106.
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In order to capture the three-dimensional effect of
the temperature fields, the temperature variations on the
mid-planes along the principal axes serve as a visual
representation of the temperature variations throughout the
cavity due to the buoyancy-induced flows. Fig. 5(a)–(d)
shows the temperature contours on x–z plane at y = 0.5
for different angles of inclination for Ra = 106. As far as
the convective heat transport is concerned this is the prin-
cipal plane that indicates the heat transfer pheno-mena
because this plane consists of the axes of the temp- erature
differentials and the gravitational direction. The tempera-
ture maps are very close to the hot and the cold walls com-
pared to the other sides, because greater temperature
gradients are observed only at these regions. As the other
sides are kept adiabatic, the temperature contours are
always normal to these sides as observed in the above fig-
ures. Further the increase in the angle of inclination results
in diagonally parallel isotherms instead of the nearly hori-
zontal isotherms observed at / = 0�.

Nusselt number is an important non-dimensional para-
meter in convective heat transfer study. The mean value of
the Nusselt number computed for the isothermal walls are
shown as variations along the y-direction in Fig. 6(a)–(d)
for Ra = 103, 104, 105, 106, respectively. An initial look on
the range of the Nusselt number values shown on these fig-
ures clearly indicates that the Nusselt number increases with
increase in the value of the Rayleigh number as expected. A
symmetric variation is observed in all these figures. However
the number of peaks and their positions vary with the value
of the Rayleigh number. The maximum value of the Nusselt
number is achieved only for / = 0� as expected. As the angle
of inclination increases, the maximum value of the Nusselt
number decreases as seen from these figures. The tabular
values of the Nusselt numbers shown in Tables 2–5 also sup-
port these trends. The results discussed for the inclined cav-
ity demonstrate that the present numerical algorithm has
correctly predicted the convective heat transport process
inside the cavity for different values of angle of inclination.
The proposed algorithm could enforce the vorticity bound-
ary values implicitly. This fact is verified by the expected
results predicted by the present algorithm for the flow and
the temperature fields.
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6. Conclusion

A coupled numerical algorithm based on the velocity–
vorticity formulation and the DQ method was tested for
natural convection in a differentially heated inclined cubic
cavity. As regard to the velocity–vorticity equations and
the boundary conditions this problem possesses some
unique characteristics. Natural convection phenomenon
couples the momentum equations with the energy equation
through the buoyancy term using the Boussinesq approxi-
mation. In the case of velocity–vorticity formulation the
velocity and the vorticity are already coupled together.
Additionally, the natural convection process couples the
temperature with the momentum equations, thus making
the velocity, vorticity and temperature fields form a fully
coupled system of equations. Since we propose a coupled
numerical solution algorithm without explicit specification
of the vorticity boundary values, the coupled natural con-
vection problem could be treated as a suitable test case to
validate the present numerical scheme. With regard to the
boundary conditions, the boundary values for the velocity
and temperature only need to be enforced for the natural
convection problem, since the vorticity values are com-
puted naturally from the known velocity fields in the
coupled system. This makes the solution algorithm very
unique compared to a scheme where the primitive variable
form of the Navier–Stokes equations is used. Test results
obtained for Rayleigh number in the range from 103

to 106 at the angle of incidence (/ = 0�) show close
agreements with other numerical scheme, producing the
expected flow and temperature fields. Moreover, the salient
characteristics of the different angle of incidence, / = 15�,
30�, 45�, 60� of natural convection in an inclined cavity
are well-illustrated in the present study.
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